Research
Ioncell® is first and foremost a research project. Our researchers from Aalto University and the University of Helsinki have been developing the Ioncell technology for nearly ten years. We are always open for new research proposals and collaborations so don't hesitate to tell us about your idea!
Process
The Ioncell® process utilizes a solvent called ionic liquid to dissolve cellulose. In the dissolved state, cellulose can be transformed into beautiful, strong fibers using the dry-jet wet spinning technology. The only chemicals applied are the non-toxic ionic liquid and water. They are both re-circulated in the process in a closed loop.
Fibers
Ioncell® fibers feel soft and are strong even when wet. Because of their high tenacity, Ioncell® fibers are optimal also in technical applications such as composites.
Ioncell® fiber properties
- Moisture absorbing
- Biodegradable
- Bright lustre
- Can be dyed like cotton and viscose
Interested in making these numbers bigger?
Get in touch!
Professor Herbert Sixta
Lead researcher
Aalto University
herbert.sixta@aalto.fi
+358 50 384 1764
Projects within Ioncell®
Recycling
What: Sustainable textile systems
Duration: 2019–2025
Funding: SRC
Description: The Finix project produces new scientific research on sustainability aspects of textile systems.
Based on that Finix helps co-creating resource-wise textile business in Finland in ways that promote global sustainable development. Read more at the project's website.
What: Recycling of textiles
Duration: 2015–2018
Funding: EU H2020
Description: Trash-2-Cash is an EU funded research project that aims at creating new regenerated fibres from pre-consumer and post-consumer waste. It also pioneers a whole new way of developing materials. Read more at the project’s website.
Contact person: Herbert Sixta
Team: Herbert Sixta, Simone Haslinger, Michael Hummel
Technology
What: Development of the Ioncell technology
Duration: 2017–2019
Funding: Business Finland (Tekes) + companies Stora Enso, Metsä Fibre, Andritz and Marimekko
Description: The main requirement for the scale-up of the Ioncell technology is to create a closed-loop process where the solvent is recovered and reused. So far there are no available technologies for recycling ionic liquids since they are a new group of solvents – and this is what the SolvRec project is trying to solve. The consortium consists of Aalto University, the University of Helsinki (UH) and the Lappeenranta University of Technology (LUT).
Contact person: Herbert Sixta
What: Commercialization of Ioncell
Duration: 2017–2019
Funding: Business Finland (Tekes) - TUTL
Description: iCom stands for Ioncell Commercialization. The objective of iCom is to develop and create a commercialization strategy for Ioncell as well as focus on the technical development towards the scale-up of the technology. To learn more, please see Ioncell's Commercialization page.
Contact person: Jari Laine
What: Ioncell pilot
Duration: 2017–2018
Funding:ERDF / EAKR
Description: Piloting is a crucial step in taking a new technology towards industrial scale manufacturing. Aalto University and VTT are focusing on the piloting of Finnish textile fiber technologies (carbamate, BioCelSol and Ioncell) in their joint TeKiDe project. VTT will perform pilot runs at Bioruukki piloting centre in Espoo. Within the project Aalto University prepares for the scale-up of the Ioncell-F process.
Contact person: Sanna Hellstén
Products
What: Tailoring of fiber properties
Duration: 2017–2021
Funding: Academy of Finland
Description: The project aims at the development of sustainable methods for fibre surface modification. This includes nanocelluloses but also on regenerated cellulose fibres or pulp itself. Novel low-cost click modification approaches will be tested for addition of surface functionality and fibre cross-linking to allow for more control over the physiochemical and mechanical properties of the fibres or other regenerated celluloses. There is a strong emphasis on development of novel ionic liquid-based modification routes but also ionic liquid-based liquid-state analytics, i.e. NMR based, that are lacking for analysis of poorly-soluble (crystalline) celluloses.
Contact person: Alistair King
Team: Herbert Sixta (Aalto), Kaniz Moriam Most (Aalto), Alistair King (UH), Tetyana Koso (UH), Jesus Perea-Buceta (UH)
What: New applications (carbon fibres)
Duration: 2017–2022
Funding: ERC-Starting Grant
Description: Carbon fibers and composites are extremely strong and lightweight materials. They have many applications in for example replacing heavy structural parts in airplanes or spacecrafts. So far the high price of carbon fibers has prevented a more wide-spread use. This project aims at producing fully bio-based carbon fibers from wood-derived biopolymers in order to replace the expensive synthetic polymer PAN (polyacrylonitrile). High performance composite fibers comprising cellulose, hemicellulose and lignin are spun through the Ioncell-F technology to yield endless filaments of the highest uniformity and pronounced lateral polymer orientation in the fiber matrix. The filaments are converted to carbon fibers in collaboration with Deakin University and Carbon Nexus research facility in Australia. The pyrolysis reactions and structure transformation of the precursor filaments are studied with for example STA-FTIR/MS, Raman spectroscopy and X-ray scattering techniques to elucidate the carbonization and graphitization mechanisms of a multi-component polymer matrix.
Contact person: Michael Hummel
Team: Michael Hummel (PI), Daisuke Sawada (postdoctoral researcher), Mikaela Trogen (PhD candidate), Hilda Zahra (PhD candidate).
Publications
- Ma, Y., Hummel, M.; Kontro, I.; Sixta, H. (2017): High performance man-made cellulosic fibres from recycled newsprints. Green Chem. 20, 160–169. Read the publication
- Asaadi, S.; Hummel, M.; Hellsten, S.; Härkäsalmi, T.; Ma, Y.; Michud, A.; Sixta, H. (2016): Renewable High-Performance Fibers from the Chemical Recycling of Cotton Waste Utilizing an Ionic Liquid. ChemSusChem 9(22): 3250–3258. Read the publication
- Michud, A.; Tanttu, M.; Asaadi, S.; Ma, Y.; Netti, E.; Kääriäinen, P.; Persson, A.; Berntsson, A.; Hummel, M.; Sixta, H. (2016): Ioncell-F: ionic liquid-based cellulosic textile fibers as an alternative to viscose and Lyocell. Textile Research Journal 86 (5): 543-552. Read the publication
IONIC LIQUIDS
- Ferreira, D.C.; Oliveira, M.L.; Bioni, T.A.; Nawaz, H.; King A.; Kilpelaininen, I.; Hummel, M.; Sixta, H.; El Seoud, O.A. Binary mixtures of ionic liquids-DMSO as solvents for the dissolution and derivatization of cellulose: Effects of alkyl and alkoxy side chains. Carbohydrate Polymers (2019), 212, 206-214. ISSN:0144-8617 DOI: 10.1016/j.carbpol.2019.02.024
- Le, H.Q.; Sixta, H.; Hummel, M. Ionic liquids and gamma-valerolactone as case studies for green solvents in the deconstruction and refining of biomass. Current Opinion in Green and Sustainable Chemistry (2019), 18, 20-24. DOI: 10.1016/j.cogsc.2018.11.009
- Parviainen,A.; King, A.W.T.; Mutikainen,I.; Hummel, M.; Selg, C.; Hauru, L.K.L.; Sixta, H.; Kilpelainen,I. Predicting cellulose solvating capabilities of acid-base conjugate ionic liquids. ChemSusChem (2013), 6 (11), 2161-2169. DOI: 10.1002/cssc.201300143
- Hauru, L.; Hummel, M.; King, A.; Kilpelainen, I.; Sixta, H. Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules, (2012), 13(9), 2896-2905. DOI:1021/bm300912y
- Froschauer, C.; Sixta, H.; Weber, H.K.; Laus, G.; Kahlenberg, V.; Schottenberger, H. A superior new route to methyl phosphonate-based ionic liquids. Chemistry Letters (2012), 41(9), 945-946. DOI: 10.1246/cl.2012.945
- King, Alistair W.T.; Parviainen, A.; Karhunen,P.; Matikainen,J.; Hauru,L.K.J:; Sixta, H.; Kilpelainen,I. Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications. RCS Advances, (2012), 2(21), 8020-8026. DOI: 10.1039/c2ra21287k.
- Hummel, M; Froschauer, C; Laus, G; Röder, T; Kopacka, H; Hauru, LKJ; Weber, HK; Sixta H; Schottenberger H. Dimethyl phosphorothioate and phosphoroselenoate ionic liquids as solvent media for cellulosic materials. 2011. Green Chem. 13(9), 2507-2517. DOI: 1039/C1GC15407A.
- Hummel, M., et al., Non-halide ionic liquids for solvation, extraction, and processing of cellulosic materials. ACS Symposium Series, 2010. 1033(Cellulose Solvents): p. 229-259.
IONIC LIQUIDS: FIBER SPINNING
- Elsayed, S.; Hummel, M.; Sawada, Guizani, Ch.; Rissanen, M.; Sixta, H. Superbase-based protic ionic liquids for cellulose filament spinning. Cellulose (2021), 28, 533-547. DOI: 10.1007/s10570-020-03505-y
- Laus, G.; Bentivoglio, G.; Schottenberger H.; Kahlenberg, V.; Kopacka, H.; Röder, T.; Sixta, H. Ionic liquids: current developments, potential and drawbacks for industrial applications. Ber. (2005), 84, 71-85.
- Bentivoglio, G.; Röder, T.; Fasching, M.; Buchberger, M.; Schottenberger H.; Sixta, H. Cellulose processing with chloride-based ionic liquids. Ber. (2006), 86, 154-161
PROCESS DEVELOPMENT
- Moriam, K.; Sawada, D.; Nieminen, K.; Ma, Y.; Rissanen, M.; Nygren, N.; Guizani, Ch.; Hummel, M.; Sixta, H. Spinneret geometry modulates the mechanical properties of man-made cellulose fibers. Cellulose (2021), online. DOI: 10.1007/s10570-021-04220-y
- Moriam, K.; Sawada, D.; Nieminen, K.; Hummel, M.; Ma, Y.; Rissanen, M.; Sixta, H. Towards regenerated cellulose fibers with high toughness. Cellulose (2021), 28, 15, 9547-9566. DOI 10.1007/s10570-021-04134-9
- Guizani, C., Larkiala, S., Moriam, K., Sawada, D.; Elsayed, S.; Rantasalo, S.; Hummel, M., Sixta, H. Air gap spinning of a cellulose solution in [DBNH][OAc] ionic liquid with a novel vertically arranged spinning bath to simulate a closed loop operation in the Ioncell® process. Journal of Applied Polymer Science (2021), 138(5), 49787. DOI: 1002/app.49787
- Elsayed, S.; Helminen, J.; Hellsten, S.; Guizani, Ch.; Witos, J.; Rissanen, M.; Rantamäki, A.H.; Hyväri, P.; Varis, P.; Wiedmer, S.K.; Kilpeläinen, I.; Sixta, H. Recycling of Superbase-Based Ionic Liquid Solvents for the Production of Textile-Grade Regenerated Cellulose Fibers in the Lyocell Process. ACS Sustainable Chemistry and Engineering (2020), 8(37), 14217-14227. DOI: 1021/acssuschemeng.0c05330
- Guizani, Ch.; Nieminen, K.; Rissanen, M.; Larkiala, S.; Hummel, M.; Sixta, H. New insights into the air gap conditioning effects during the dry-jet wet spinning of an ionic liquid-cellulose solution. Cellulose (2020), 27(9), 4931-4948. DOI: 1007/s10570-020-03115-8
- Baird, Z.S.; Uusi-Kyyny.P.; Witos, J.; Rantamäki, A.H.; Sixta, H.; Wiedmer, S.K.; Alopaeus, V. Vapor-Liquid Equilibrium of Ionic Liquid 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-enium Acetate and Its Mixtures with Water. Journal of Chemical and Engineering Data (2020), 65(5), 2405-2421. DOI: 1021/acs.jced.9b01039
- Elsayed, S.; Viard, B.; Guizani, Ch.; Witos, J.; Sixta, H. Limitations of Cellulose Dissolution and Fiber Spinning in the Lyocell Process Using [mTBDH][OAc] and [DBNH][OAc] Solvents. Eng. Chem. Res. (2020), 59, 20211-20220. DOI: 10.1021/acs.iecr.0c04283
- Baird, Z.; S.; Dahlberg, A.; Uusi-Kyyny, P.; Osmanbegovic, N.; Witos, J.; Helminen, J.; Cederkrantz, D.; Hyvari, P.; Alopaeus, V:, Kilpelainen,I.; Wiedmer, S.K.; Sixta, H. Physical properties of 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (mTBD). International J Thermophysics (2019), 40(7), 1-23. ISSN:0195-928X DOI:10.1007/s10765-019-2540-2
- Nishiyama, Y.; Asaadi, S.; Ahvenainen, P.; Sixta, H. Water-induced crystallization and nano-scale spinodal decomposition of cellulose in NMMO and ionic liquid dope. Cellulose (2019), 26, 281-289. ISSN:0969-0239. DOI: 10.1007/s10570-018-2148-x
- Hummel, M.; Michud, A.; Roselli, A.; Stepan, A.; Hellsten, S.; Asaadi, S.; Sixta, H. High-performance lignocellulosic fibers spun from ionic liquid solution. Cell Sci Technol (2018) Wiley, Chapter 14.
- Hummel, M.; Ma, Y.; Michud, A.; Asaadi, S.; Roselli, A.; Stepan, A.; Hellstén, S.; Sixta, H. Lignocellulosic Multicomponent Fibers Spun from Superbase-Based Ionic Liquids Lenzinger Ber. (2018) 94, 67-76
- Hummel, M.; Michud, A.; Tanttu, M.; Asaadi, S.; Ma, Y.; Hauru, L.K.J.; Parviainen, A.; King, A.W.T.; Kilpelainen, I.; Sixta, H. Ionic liquids for the production of man-made cellulosic fibers - opportunities and challenges. Advances in Polymer Science (2016), 271, 133-168. ISSN:1436-5030. DOI: 1007/12_2015_307
- Stepan, Agnes M.; Michud, Anne; Hellsten, Sanna; Hummel, Michael; Sixta, Herbert. IONCELL-P&F: Pulp Fractionation and Fiber Spinning with Ionic Liquids. Industrial & Engineering Chemistry Research(2016), 55(29), 8225-8233. ISSN:0888-5885
DOI:10.1021/acs.iecr.6b00071 - Michud, A.; Tanttu, M.; Asaadi, S.; Ma, Y.; Netti, E.; Kaariainen, P.; Persson, A.; Berntsson, A.; Hummel, M.; Sixta, H. Ioncell-F: ionic liquid-based cellulose textile fibers as an alternative to viscose and Lyocell. Textile Research J. (2016), 86(5), 543-552. ISSN:0040-5175
DOI:10.1177/004051751559177 - Michud, A.; Hummel, M.; Sixta, H. Influence of process parameters on the structure formation of man-made cellulosic fibers from ionic liquid solution. Appl. Polym Sci. (2016), 133(30), 43718. ISSN:0021-8995. DOI: 10.1002/app.43718
- Hauru L.K.J.; Hummel, M.; Nieminen, K.; Michud, A.; Sixta, H. Cellulose regeneration and spinnability from ionic liquids. Soft Matter (2016), 12(5), 1487-1495. ISSN:1744-683X
DOI:10.1039/C5SM02618K - Ma, Y.; Hummel, M.; Sixta, H. Effect of E-beam treatment of lignocellulosics on the rheological properties of the ionic liquid solutions. Annual Transactions of the Nordic Rheology Society (2016), 24.
- Michud, A.; Hummel, M.; Sixta, H. Influence of molar mass distribution on the final properties of fibers regenerated from cellulose dissolved in ionic liquid by dry-jet wet spinning. Polymer (2015), 75, 1-9 (Article number 18037). DOI: 1016/j.polymer.2015.08.01
- Hummel, M.; Michud, A.; Assadi, S.; Ma, Y. Hauru, L.K.J.; Hartikainen, E.; Sixta, Rheological requirements for continuous filament spinning of cellulose-ionic liquid solutions. Annual Transactions of the Nordic Rheology Society (2015), 23.
- Sixta, H.; Michud, A.; Hauru, L.; Shirin, A.; Ma, Y.; King, A.W.T.; Kilpeläinen, I.; Hummel, M. Ioncell-F: A high-strength regenerated cellulose fibre. Nordic Pulp and Paper Research Journal (2015), 30 (1), 43-57.
- Hauru, L.K.J.; Hummel, M.; Michud, A.; Sixta, H. Dry-jet wet spinning of strong cellulose filaments from ionic liquid solution. Cellulose (2014), 21(6), 4471-4481. DOI: 1007/s10570-014-0414-0
- Hummel, M.; Michud, A.; Sixta, H. Extensional rheology of cellulose-ionic liquid solutions. Annual Transactions of the Nordic Rheology Society (2011), 19.
PROCESS ANALYTICS
- Guizani, C.; Trogen, M.; Zahra, H.; Pitkänen, L.; Moriam, K.; Rissanen, M.; Mäkelä, M.; Sixta, H.; Hummel, M. Fast and quantitative compositional analysis of hybrid cellulose-based regenerated fibers using thermogravimetric analysis and chemometrics. Cellulose (2021), 28, 6797-6812. DOI: 10.1007/s10570-021-03923-6
- Guizani, C., Hellstén, S., Witos, J., Mäkelä, M.; Hummel, M., Sixta, H. Quantitative Raman spectroscopy for the Ioncell® process: Part 2—quantification of ionic liquid degradation products and improvement of prediction performance through interval PLS. Cellulose (2020), 27(17), 9813-9824. DOI: 1007/s10570-020-03466-2
- Guizani, Ch.; Hellsten, S.; Witos, J.; Sixta, H. Quantitative Raman spectroscopy for the Ioncell™ process. Part 1: comparison of univariate and multivariate calibration methods for the quantification of water and protic ionic liquid components. Cellulose (2020), 27(1), 157-170. DOI: 1007/s10570-019-02809-y
- Haslinger, S.; Hietala, S.; Hummel, M.; Maunu S-L.; Sixta, H. Solid-state NMR method for the quantification of cellulose and polyester in textile blends. Carbohydrate Polymers (2019), 207, 11-16. ISSN:0144-8617. DOI: 10.1016/j.carbpol.2018.11.052.
- Michud, A., Hummel, M.; Haward, S.; Sixta, H. Monitoring of cellulose depolymerization in 1-ethyl-3-methylimidazolium acetate by shear and elongational rheology. Carbohydrate Polymers, (2015), 117(6), 355–363. DOI: 1016/j.carbpol.2014.09.075
- Pitkänen, L.; Sixta, H. Size-exclusion chromatography of cellulose: observations on the low-molar-mass fraction. Cellulose (2020), 27: 9217-9225 DOI: 10.1007/s10570-020-03419-9
ADVANCED FIBER CHARACTERIZATION
- Sawada, D.; Nishiyama, Y.; Röder, T.; Porcar, L.; Zahra, H.; Trogen, M.; Sixta, H.; Hummel, M. Effect of nanostructural parameters on tensile properties of regenerated cellulose fibres spun by different spinning technologies. Polymer (2021), 218, 123510. DOI:1016/j.polymer.2021.123510
- Gusenbauer, C., Nypelö, T., Jakob, D.S., Xu, X.G.; Vezenov, D.V.; Asaadi, S.; Sixta, H., Konnerth, J. Differences in surface chemistry of regenerated lignocellulose fibers determined by chemically sensitive scanning probe microscopy. International Journal of Biological Macromolecules (2020), 165, 2520-2527. DOI: 1016/j.ijbiomac.2020.10.145
- Mäkelä, M., Rissanen, M., Sixta, H. Machine vision estimates the polyester content in recyclable waste textiles. Resources, Conservation and Recycling (2020), 161, 105007. DOI: 1016/j.resconrec.2020.105007
- Ma, Y.; Rissanen, M.; You, X.; Hummel, M.; Sixta, H. New method for determining the degree of fibrillation of regenerated cellulose fibres. Cellulose DOI: 1007/s10570-020-03513-y
- Colson, J.; Pettersson, T.; Asaadi, S.; Sixta, H.; Nypeloe, T.; Mautner, A.; Konnerth, J. Adhesion properties of regenerated lignocellulosic fibers towards polylactic acid microspheres assessed by collodidal probe technique. Colloid and Interface Science (2018), 532, 819-829. ISSN:0021-9797. DOI:10.1016/j.jcis.2018.08.03
- Nypeloe, T.; Asaadi, S.; Kneidinger, G.; Sixta, H. Conversion of wood-biopolymers into macrofibers with tunable surface energy via dry-jet wet-spinning. Cellulose (2018), 25(9), 5297-5307. ISSN:0969-0239. DOI:10.1007/s10570-018-1902-4
- Asaadi, S.; Hummel, M.; Ahvenainen, P.; Gubitosi, M.; Olsson, U.; Sixta, H. Structural analysis of Ioncell-F fibres from birch wood. Carbohydrate Polymers (2018), 181, 893-901. ISSN:0144-8617, DOI:10.1016/j.carbpol.2017.11.062
- Wanasekara, N.D.; Michud, A.; Zhu, Chenchen, Rahatekar, S.; Sixta, H.; Eichhorn, St.J. Deformation mechanism in ionic liquid spun cellulose fibres. Polymer (2016), 99, 222-230. ISSN:0032-386. DOI:10.1016/j.polymer.2016.07.007
- Holding, A.J.; Maekelae, V.; Tolonen,L.; Sixta, H.; Kilpelainen, I.; King, A.W.T. Solution-state one- and two-dimensional NMR spectroscopy of high-molecular-weight cellulose. ChemSusChem (2016), 9(8), 880-892. ISSN:1864-5631; DOI:10.1002/cssc.201501511
TEXTILE RECYCLING
- Haslinger, S.; Hummel, M.; Anghelescu-Hakala, A.; Maattanen, M. Sixta, H. Upcycling of cotton polyester blended textile waste to new manmade cellulose fibers. Waste Management (2019), 97, 88-96. ISSN:0956-053X DOI:10.1016/j.wasman.2019.07.040
- Haslinger, S.; Wang, Y.; Rissanen, M.; Lossa, M.B.; Tanttu, M.; Ilen, E.; Maattanen, M.; Harlin, A.; Hummel, M., Sixta, H. Recycling of vat and reactive dyed textile waste to new colored man-made cellulose fibers. Green Chem (2019), 21(20), 5598-5610. ISSN:1463-9262 DOI: 10.1039/c9gc02776a
- Wedin, H.; Lopes, M.; Sixta, H.; Hummel, M. Evaluation of post-consumer cellulosic textile waste for chemical recycling based on cellulose degree of polymerization and molar mass distribution. Textile Research J (2019), 89(23-24), 5067-5075. ISSN:0040-5175 DOI: 10.1177/0040517519848159
- Ma, Y.; Stubb, J.; Kontro, I.; Nieminen, K.; Hummel, M.; Sixta, H. Filament spinning of unbleached birch kraft pulps: effect of pulping intensity on the processability and the fiber properties. Carbohydrate Polymers (2018), 179, 145-151. ISSN:0144-8617
DOI:10.1016/j.carbpol.2017.09.079 - Ma, Y.; Hummel, M.; Kontro, I.; Sixta, H. High performance man-made cellulosic fibers from recycled newsprint. Green Chemistry (2018), 20(1), 160-169. ISSN:1463-9262
DOI:10.1039/C7GC02896B - Asaadi, Shirin; Hummel, Michael; Hellsten, Sanna; Ma, Yibo; Michud, Anne; Sixta, Herbert. Renewable high-performance fibers from the chemical recycling of cotton waste utilizing an ionic liquid. ChemSusChem (2016), 22, 3250-3258. DOI: 10.1002/cssc.201600680
- Ma, Y.; Hummel, M.; Maattanen, M.; Sarkilahti, A.; Harlin, A.; Sixta,H. Upcycling of waste paper and cardboard to textiles. Green Chemistry (2016), 18(3), 858-866. ISSN:1463-9262
DOI:10.1039/C5GC01679G - Ma, Y.; Asaadi, S.; Johansson, L-S; Ahvenainen, P.; Reza, M.; Alekhina, M.; Rautkari, L.; Michud, A.; Hauru, L.; Hummel, M.; Sixta, H. High-strength composite fibers from cellulose-lignin blends regenerated from ionic liquid solition. ChemSusChem (2015), 8(23), 4030-4039. ISSN:1864-5631; DOI:10.1002/cssc.201501094
SMART FIBERS, MODIFIED FIBERS
- Moriam, K.; Rissanen, M.; Sawada, D.; Altgen, M.; Johansson, L.-S.; Evtuguin, D.V.-; Guizani, C.; Hummel, M.; Sixta, H. Hdrophobization of the Man-made Cellulosic fibers by incorporating plant-derived hydrophobic compounds. ACS Sustainable Chemistry and Engineering (2021), 9, 13, 4915-4925. DOI 10.1021/acssuschemeng.1c00695
- Darabi, S.; Hummel, M.; Rantasalo, S.; Rissanen, M.; Öberg, M.; Hilke, H.; Hwang, B.; Skrivars, M.; Hamedi, M.M.; Sixta, H.; Lund, A.; Mueller, C. Green conducting cellulose yarns for machine-sewn electronic textiles. ACS Applied Materials and Interfaces (2020), 12,50, 56403-56412. DOI: 1021/acsami.0c15399
- Haslinger, S.; Ye, Y.; Rissanen, M.; Hummel, M.; Sixta, H. Cellulose Fibers for High-Performance Textiles Functionalized with Incorporated Gold and Silver Nanoparticles. ACS Sustainable Chemistry and Engineering (2020), 8(1), 649-658. DOI: 1021/acssuschemeng.9b0638
- Asaadi, S.; Kakko, T.; King, A.; Kilpelainen, I.; Hummel, M.; Sixta, H. High-peformance acetylated Ioncell-F fibers with low degree of substitution. ACS Sustainable Chemistry&Engineering (2018), 6(7), 9418-9426. ISSN:2168-0485
DOI:10.1021/acssuschemeng.8b01768
COMPOSITES
- Bulota, M.; Sriubaite, S.; Michud, A.; Nieminen, K.; Hughes, M.; Sixta, H.; Hummel. M. The fiber-matrix interface in Ioncell cellulose fiber composites and its implications for the mechanical performance. Journal of Applied Polymer Science. 2021; 138: e50306 DOI: 10.1002/app.50306
- F.; Xiang, W.; Sawada, D.; Bai, L.; Hummel, M.; Sixta, H.; Budtova, T. Exploring Large Ductility in Cellulose Nanopaper Combining High Toughness and Strength. ACS Nano (2020), 14(9), 11150-11159. DOI: 10.1021/acsnano.0c02302
- Chen, F.; Sawada, D.; Hummel, M.; Sixta, H.; Budtova, T. Swelling and dissolution kinetics of natural and man-made cellulose fibers in solvent power tuned ionic liquid. Cellulose (2020), 27(13), 7399-7415. DOI: 1007/s10570-020-03312-5
- Chen, F.; Sawada, D.; Hummel, M.; Sixta, H.; Budtova, T. Unidirectional all-cellulose composites from flax via controlled impregnation with ionic liquid. Polymers (2020), 12(5), 1010. DOI: 3390/POLYM12051010
- Bulota, M.; Sriubaite, S.; Michud, A.; Sixta, H.; Hummel, S. The fiber-matrix interface in Ioncell cellulose fiber composites and its implications for the mechanical performance. Journal of Applied Polymer Science (2020) DOI: /10.1002/app.50306
- Bulota, M.; Michud, A.; Hummel, M.; Hughes, M.; Sixta, H. The effect of hydration on the micromechanics of regenerated cellulose fibres from ionic liquid solutions of varying draw ratios. Carbohydrate Polymers (2016), 151, 1110-1114. ISSN:0144-8617
DOI:10.1016/j.carbpol.2016.06.068 - Santamala, H.; Livingston, R.; Sixta, H.; Hummel, M.; Skrifvars, M.; Saarela, O. Advantages of regenerated cellulose fibres as compared to flax fibres in the processability and mechanical performance of thermoset composites. Composites, Part A: Applied Science and Manufacturing, 84 (2016), 377-385. ISSN:1359-835X; DOI:10.1016/j.compositesa. 2016.02.011
CARBON FIBERS
- Zahra, H.; Sawada, D.; Kumagai, S.; Ogawa, Y.; Johansson, L.-S.; Ge, Y.; Guizani, C.; Yoshioka, T.; Hummel, M. Evolution of carbon nanostructure during pyrolysis of homogeneous chitosan-cellulose composite fibers. Carbon (2021), 185, 27-38. DOI: 10.1016/j.carbon.2021.08.062
- Le, N,-D.; Trogen, M.; Ma, Y.; Varley, R.J.; Hummel, M.; Byrne, N. Understanding the influence of key parameters on the stabilisation of cellulose-lignin composite fibres Cellulose (2021), 28, 911-919. DOI:1007/s10570-020-03583-y.
- Le, N,-D.; Trogen, M.; Varley, R.J.; Hummel, M.; Byrne, N. Effect of boric acid on the stabilisation of cellulose-lignin filaments as precursors for carbon fibres Cellulose (2021), 28, 729-739. DOI:1007/s10570-020-03584-x
- Trogen, M.; Le, N.-D.; Sawada, D.Guizani, Ch.; Lourencon, T.V.; Pitkänen, L.; Sixta, H.; Shah, R.; O’Neill, H.; Balakshin, M.; Byrne, N.; Hummel, M. Cellulose-lignin composite fibres as precursors for carbon fibres. Part 1 – Manufacturing and properties of precursor fibres. Carbohydrate Polymers (2021) 252,117133. DOI: 1016/j.carbpol.2020.117133
- Le, N,-D.; Trogen, M.; Ma, Y.; Varley, R.J.; Hummel, M.; Byrne, N. Cellulose-lignin composite fibres as precursors for carbon fibres. Part 2 - The impact of precursor properties on carbon fibres Polym. (2020), 250, 116918. DOI: 10.1016/j.carbpol.2020.116918.
- Zahra, H., Sawada, D., Guizani, C., Ma, Y.; Kumagai, S.; Yoshioka, T.; Sixta, H., Hummel, M. Close Packing of Cellulose and Chitosan in Regenerated Cellulose Fibers Improves Carbon Yield and Structural Properties of Respective Carbon Fibers. Biomacromolecules (2020), 21(10), 4326-4335. DOI: 1021/acs.biomac.0c01117
- Mikkilä, J.; Trogen, M.; Koivu, K. A. Y.; Kontro, J.; Kuuskeri, J.; Maltari, R.; Dekere, Z.; Kemell, M.; Mäkelä, M. R.; Nousiainen, P. A.; Hummel, M.; Sipilä, J.; Hildén, K. Fungal Treatment Modifies Kraft Lignin for Lignin- And Cellulose-Based Carbon Fiber Precursors ACS Omega (2020), 5, 6130-6140. DOI:1021/acsomega.0c00142.
- Byrne, N.; DeSilva, R.; Ma, Y.; Sixta, H.; Hummel, M. Enhanced stabilization of cellulose-lignin hybrid filaments for carbon fiber production. Cellulose (2018), 25(1), 723-733. ISSN:0969-0239. DOI:10.1007/s10570-017-1579-0
- Byrne, Nolene; Setty, Mohan; Blight, Simon; Tadros, Ray; Ma, Yibo; Sixta, Herbert; Hummel, Michael. Cellulose-Derived Carbon Fibers Produced via a Continuous Carbonization Process: Investigating Precursor Choice and Carbonization Conditions. Macromolecular Chemistry and Physics(2016), 217, 2517-2524. ISSN:1022-1352; DOI:10.1002/macp.20160023
FILM
- Wawro, D.; Steplewski, W.; Madaj, W.; Michud, A.; Hummel, M.; Sixta, H. Impact of Water in the Casting of Cellulosic Film from Ionic Liquid Solutions. Fibres&Textiles in Eastern Europe (2015), 23 (4), 25-32.
- Wawro, D.; Hummel, M.; Michud, A.; Sixta, H. Strong cellulose film cast from ionic liquid solutions. Fibres&Textiles in Eastern Europe (2014), 22 (3), 35-42.
IL-AIDED FRACTIONATION FOR DELIGNIFACTION
- Tu, W.-C.; Weigand, L.; Hummel, M.; Sixta, H.; Brandt-Talbot, A.; Hallett, J.O. Characterisation of cellulose pulps isolated from Miscanthus using a low-cost acidic ionic liquid. Cellulose (2020), 27(8), 4745-4761. DOI: 1007/s10570-020-03073-1
- Deb, S.; Labafzadeh, S.; Liimatainen, U.; Parviainen, A.; Auru, L.; Ahzar, S.; Lawoko, M.; Kulomaa, Kakko, T.; Fiskari, J.; Borrega, M.; Sixta, H.; Kilpelainen, I.; King, A.W.T. Application of mild autohydrolysis to facilitate the dissolution of wood chips in direct-dissolution solvents. Green Chemistry (2016), 18(11), 3286-3294. ISSN:1463-9262; DOI:10.1039/C6GC00183A.
- Anugwom, I.; Eta, V.; Virtanen, P.; Maki-Arvela, P.; Hedenstrom, M.; Yibo, M.; Hummel, M.l; Sixta, H.; Mikkola, J-P. Towards optimal selective fractionation for Nordic woody biomass using novel amine-organic superbase derived switchable ionic liquids (SILs). Biomass and Bioenergy(2014), 70, 373-381. DOI: 1016/j.biombioe.2014.08.005.
- Anugwom, I., Eta, V.; Virtanen, P.; Mäki-Arvela, P.; Hedenström, M.; Hummel, M.; Sixta, H.; Mikkola, J-P. Switchable ionic liquids as delignification solvents for lignocellulosic materials. ChemSusChem (2014), 7(4), 1170-1176. DOI: 1002/cssc.201300773
- Hauru,L.K.J.; Hummel, M.; Alekhina, M.; King, A.W.T.; Kilpelainen,I.; Penttillä, P.A:; Serima, R.; Sixta,H. Enhancement of ionic liquid-aided fractionation of birchwood. Part 1: Autohydrolysis pretreatment. RSC Advances (2013), 3 (37), 16365-16373. DOI: 1039/c3ra41529e
IL-AIDED FRACTIONATION OF POLYSACCHARIDES
- Wollboldt, P.; Strach, M.; Russler, A.; Jankova, S.; Sixta, H. Upgrading of commercial pulps to high-purity dissolving pulps by an anionic liquid-based extraction method. Holzforschung (2017), 71(7-8), 611-618. ISSN:0018-3830, DOI:10.1515/hf-2016-0192
- Roselli, A; Hummel, M.; Vartiainen, J.; Nieminen, K.; Sixta, H. Understanding the role of water in the interaction of ionic liquids with wood polymers. Carbohydrate Polymers (2017), 168, 121-128. ISSN:0144-8617, DOI:10.1016/j.carbpol.2017.03.013
- Stepan, A.M.; Monshizadeh, A.; Hummel, M.; Roselli, A.; Sixta, H. Cellulose fractionation with Ioncell-P. Carbohydrate Polymers (2016), 150, 99-106. ISSN:0144-8617; DOI:10.1016/j.carbpol.2016
- Roselli, A.; Asikainen, S.; Stepan, A.; Monishizadeh, A.; van Weymarn, N.; Kovasin, K.; Wang, Y.; Xiong, H.; Turunen, O.; Hummel, M.; Sixta, H. Comparison of pulp species in IONCELL-P: selective hemicellulose extraction method with ionic liquids. Holzforschung (2016), 70 (40), 291-296. ISSN:0018-3830 DOI: 1515/hf-2014-0313.
- Laine, C.; Asikainen, S.; Talja, R.; Stepan, A.; Sixta, H.; Harlin, A. Simultaneous bench scale production of dissolving grade pulp and valuable hemicelluloses from softwood kraft pulp by ionic liquid extraction. Carbohydrate Polymers (2016), 136, 402-408. CODEN:CAPOD8
ISSN:0144-8617; DOI:10.1016/j.carbpol.2015.09.039 - Roselli, A.; Hummel, M.; Monshizadeh, A.; Maloney, T.; Sixta, H. Ionic liquid extraction method for upgrading eucalyptus kraft pulp to high purity dissolving pulp. Cellulose (2014) 21(5), 3655-3666. DOI: 1007/s10570-014-0344-x
- Froschauer, Carmen; Hummel, Michael; Iakovlev, Mikhail; Roselli, Annariikka; Schottenberger, Herwig; Sixta, Herbert. Separation of hemicellulose and cellulose from wood by means of ionic liquid/cosolvent systems. Biomacromolecules (2013), 14 (6), 1741-1750. DOI: 1021/bm400106h
- Froschauer,C.; Hummel, H.; Laus,G.; Schottenberger,H.; Sixta,H.; Weber,K.H.; Zuckerstätter,G.: Dialkyl phosphate-related ionic liquids as selective solvents for xylan. Biomacromolecules (2012), 13(6), 1973-1980 DOI: 1021/bm300582s
Book chapters
- Evangelos Sklavounos, Jussi K.J. Helminen, Lasse Kyllönen, Ilkka Kilpeläinen & Alistair W.T. King: Ionic Liquids: Recycling. Encyclopedia of Inorganic and Bioinorganic Chemistry. Online © 2011–2016 John Wiley & Sons, Ltd. Read the chapter
Doctoral theses
- Sherif Elsayed (2021): Recycling and Spinning of Superbase-Based Ionic Liquid Solutions in the Lyocell Process: Potential and Limitations. Read the doctoral thesis
- Simone Haslinger (2020): Towards a Closed Loop Economy in Textile Industry: Separation, Dyeing and Re-Spinning of Cellulose Rich Textile Waste. Read the doctoral thesis
- Shirin Asaadi (2019): Dry-Jet Wet Spinning of Technical and Textile Filament Fibers from a Solution of Wood Pulp and Waste Cotton in an Ionic Liquid. Read the doctoral thesis
- Yibo Ma (2018): Fibre spinning from various low refined, recycled lignocelluloses using ionic liquid. Read the doctoral thesis
- Alexandr Ostonen (2017): Thermodynamic study of protic ionic liquids. Read the doctoral thesis
- Lauri K. J. Hauru (2017): Lignocellulose solutions in ionic liquids. Read the doctoral thesis
- Ashley Holding (2016): Ionic Liquids and Electrolytes for Cellulose Dissolution. Read the doctoral thesis
- Anne Michud (2016): Development of a novel process for the production of man-made cellulosic fibers from ionic liquid solution. Read the doctoral thesis
- Arno Parviainen (2016): Acid-Base Conjugate Ionic Liquids in Lignocellulose Processing: Synthesis, Properties and Applications. Read the doctoral thesis
Ioncell® turns wood into garments and clothes
Ioncell® is part of Aalto University's campaign that brings prominent research projects into the limelight. Could Ioncell® be the savior of the current textile industry? Take a look!
Ioncell® team and collaborators
- Aalto CHEM, Biorefineries research group, Prof. Herbert Sixta
- University of Helsinki, Materials Chemistry, Organic Chemistry research group, Prof. Ilkka Kilpeläinen and Dr. Alistair King
- Aalto ARTS, the Fashion/Textile Futures research group, Prof. Kirsi Niinimäki
- Aalto CHEM, Chemical Engineering research group, Prof. Ville Alopaeus
- Aalto CHEM, Plant Design, Prof. Pekka Oinas
- Swedish School of Textiles at the University of Borås
- Tampere University of Technology
Contact Us
Business inquiries
Antti Rönkkö
CEO, Ioncell Oy
antti.ronkko@ioncell.fi
+358 50 518 4750
Research proposals
Professor Herbert Sixta
Lead researcher
Aalto University
herbert.sixta@aalto.fi
+358 50 384 1764